Keywords. Davenport{schinzel Sequence; Tree; Extremal Problem 0 Extremal Problems for Colored Trees and Davenport{schinzel Sequences

نویسنده

  • Martin Klazar
چکیده

In the theory of generalized Davenport{Schinzel sequences one estimates the maximum lengths of nite sequences containing no subsequence of a given pattern. Here we investigate a further generalization, in which the class of sequences is extended to the class of colored trees. We determine exactly the extremal functions associated with the properly 2-colored path of four vertices and with the monochromatic path of any length. We prove that the extremal function of any colored path grows almost linearly (this is a characteristic feature of DS sequences). Three problems are posed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Davenport–Schinzel sequences: results, problems, and applications

We survey in detail extremal results on Davenport–Schinzel sequences and their generalizations, from the seminal papers of H. Davenport and A. Schinzel in 1965 to present. We discuss geometric and enumerative applications, generalizations to colored trees, and generalizations to hypergraphs. Eleven illustrative examples with proofs are given and nineteen open problems are posed.

متن کامل

Extremal problems for colored trees and Davenport-Schinzel sequences

In the theory of generalized Davenport–Schinzel sequences one estimates the maximum lengths of finite sequences containing no subsequence of a given pattern. Here we investigate a further generalization, in which the class of sequences is extended to the class of colored trees. We determine exactly the extremal functions associated with the properly 2-colored path of four vertices and with the ...

متن کامل

Combinatorial aspects of Davenport-Schinzel sequences

A finite sequence u = a1a2 . . . ap of some symbols is contained in another sequence v = b1b2 . . . bq if there is a subsequence bi1bi2 . . . bip of v which can be identified, after an injective renaming of symbols, with u. We say that u = a1a2 . . . ap is k-regular if i − j ≥ k whenever ai = aj , i > j. We denote further by |u| the length p of u and by ‖u‖ the number of different symbols in u....

متن کامل

Extremal problems for ordered (hyper)graphs: applications of Davenport-Schinzel sequences

We introduce a containment relation of hypergraphs which respects linear orderings of vertices and investigate associated extremal functions. We extend, by means of a more generally applicable theorem, the n log n upper bound on the ordered graph extremal function of F = ({1, 3}, {1, 5}, {2, 3}, {2, 4}) due to Füredi to the n(log n)2(log log n)3 upper bound in the hypergraph case. We use Davenp...

متن کامل

Tightish Bounds on Davenport-Schinzel Sequences

Let Ψs(n) be the extremal function of order-s Davenport-Schinzel sequences over an n-letter alphabet. Together with existing bounds due to Hart and Sharir (s = 3), Agarwal, Sharir, and Shor (s = 4, lower bounds on s ≥ 6), and Nivasch (upper bounds on even s), we give the following essentially tight bounds on Ψs(n) for all s: Ψs(n) =  n s = 1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999